Generic 2 × 2 matrices in positive characteristic
نویسندگان
چکیده
منابع مشابه
A NOTE VIA DIAGONALITY OF THE 2 × 2 BHATTACHARYYA MATRICES
In this paper, we consider characterizations based on the Bhattacharyya matrices. We characterize, under certain constraint, dis tributions such as normal, compound poisson and gamma via the diago nality of the 2 X 2 Bhattacharyya matrix.
متن کامل2 00 5 Root Numbers and Ranks in Positive Characteristic
For a global field K and an elliptic curve Eη over K(T), Silverman's specialization theorem implies rank(Eη(K(T))) ≤ rank(Et(K)) for all but finitely many t ∈ P 1 (K). If this inequality is strict for all but finitely many t, the elliptic curve Eη is said to have elevated rank. All known examples of elevated rank for K = Q rest on the parity conjecture for elliptic curves over Q, and the exampl...
متن کاملQuadratic Reciprocity in Characteristic 2
Let F be a finite field. When F has odd characteristic, the quadratic reciprocity law in F[T ] lets us decide whether or not a quadratic congruence f ≡ x2 mod π is solvable, where the modulus π is irreducible in F[T ] and f 6≡ 0 mod π. This is similar to the quadratic reciprocity law in Z. We want to develop an analogous reciprocity law when F has characteristic 2. At first it does not seem tha...
متن کاملSatoh's algorithm in characteristic 2
We give an algorithm for counting points on arbitrary ordinary elliptic curves over finite fields of characteristic 2, extending the O(log q) method given by Takakazu Satoh, giving the asymptotically fastest point counting algorithm known to date.
متن کاملHyperelliptic Curves in Characteristic 2
In this paper we prove that there are no hyperelliptic supersingular curves of genus 2n − 1 in characteristic 2 for any integer n ≥ 2. Let F be an algebraically closed field of characteristic 2, and let g be a positive integer. Write h = blog2(g + 1) + 1c, where b c denotes the greatest integer less than or equal to a given real number. Let X be a hyperelliptic curve over F of genus g ≥ 3 of 2-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2000
ISSN: 0021-8693
DOI: 10.1006/jabr.1999.8143